Dr.Ed Boyden leads the Synthetic Neurobiology Group, which develops tools for analyzing and repairing complex biological systems such as the brain, and applies them systematically to reveal ground truth principles of biological function as well as to repair these systems. These technologies include expansion microscopy, which enables complex biological systems to be imaged with nanoscale precision; optogenetic tools, which enable the activation and silencing of neural activity with light; robotic methods for single-cell analysis and directed evolution that are yielding new synthetic biology reagents for dynamic imaging of physiological signals; and, novel methods of focal noninvasive human brain stimulation. He co-directs the MIT Center for Neurobiological Engineering, which aims to develop new tools to accelerate neuroscience progress.

Amongst other recognitions, he has received the Canada Gairdner International Award (2018), the Breakthrough Prize in Life Sciences (2016), the BBVA Foundation Frontiers of Knowledge Award (2015), the Carnegie Prize in Mind and Brain Sciences (2015), the Jacob Heskel Gabbay Award (2013), the Grete Lundbeck Brain Prize (2013), the NIH Director’s Pioneer Award (2013), the NIH Director’s Transformative Research Award (three times, 2012, 2013, and 2017), and the Perl/UNC Neuroscience Prize (2011). He was also named to the World Economic Forum Young Scientist list (2013) and the Technology Review World’s “Top 35 Innovators under Age 35” list (2006), and is an elected member of the American Academy of Arts and Sciences (2017), the National Academy of Inventors (2017), and the American Institute for Medical and Biological Engineering (2018).

 

_______________

Author

  • Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activityNature neuroscience8(9), 1263.
  • Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., … & Boyden, E. S. (2010). High-performance genetically targetable optical neural silencing by light-driven proton pumpsNature463(7277), 98.